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Abstract

We consider the following evolution system of Klein-Gordon-Schrödinger
type

iψt + κψxx + iαψ = φψ, x ∈ Ω, t > 0,
φtt − φxx + φ+ λφt = −Reψx, x ∈ Ω, t > 0,

satisfying the following initial and boundary conditions

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ Ω,
ψ(x, t) = φ(x, t) = 0, x ∈ ∂Ω, t > 0,

with κ, α, λ positive constants and Ω a bounded subset of R. This system de-
scribes the nonlinear interaction between high frequency electron waves and
low frequency ion plasma waves in a homogeneous magnetic field, adapted
to model the UHH plasma heating scheme. The system focuses on the vital
role of collisions, by considering the non-homogeneous polarization drift for
the low frequency coupling. In Part I we set up the system, starting from
first principles. In Part II we work out global existence and uniqueness of
solutions and establish the necessary conditions for the system to manifest
energy decay. In Part III the results are physically interpreted, providing a
threshold of the effectiveness of UHH, in terms of the plasma variables.

1 Introduction and Motivation

The aim of the present work is to study a model describing the Upper Hybrid
Heating (UHH) scheme for plasmas in fusion devices. UHH is the dominant branch
of the general Electron Cyclotron Resonance Heating (ECRH) scheme, which,
for tokamaks and stellarators, constitutes a basic method of plasma build-up and
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heating (the W7-X experiment, currently under construction, will be equipped
with an ECRH power of 10 MW). Moreover, ECRH is an attractive method to
study transport mechanisms, since it allows for a very localised power deposition,
thus influencing temperature and current profiles ([21]).

The UHH scheme consists in injecting electromagnetic waves in the range
100-200 GHz, from the high field side towards the core of the device. Within
this frequency range, the incident wave takes on the character of a longitudinal
oscillation for the resonant electrons, which become highly energetic.

With respect to the physical mechanism involved in the energy damping of
the waves, UHH comprises two stages:
(i) Collisionless damping. The energy of the waves is transferred to the resonant
electrons, through collisionless mechanisms, e.g. Landau damping. Subsequently,
the electrons gain excessive kinetic energy, thus heated.
(ii) Collisional damping. The excessive electron energy is distributed over elec-
trons and non-resonant ions, through Coulomb collisions, producing bulk heating
of the plasma (equipartition).

Collisional damping is very crucial for the success of UHH. If collisions are
infrequent, non-thermal distributions will occur, which may result in a reduction
in the power delivered to the plasma ([22]). Therefore, it is important to determine
the operational conditions for the device, under which UHH becomes effective,
namely the collisions manage to distribute the excessive electron energy over the
species at an exponential rate. To the best of our knowledge, this task is not as
yet undertaken.

Concerning the physical context, we investigate the nonlinear interaction
between high frequency electron waves and low frequency ion plasma waves in
a homogeneous magnetic field. This phenomenon arises, once a high frequency
electric field with low frequency amplitude propagates through the plasma.

The celebrated Zakharov system (see [23] and [4], [5], [7], [9], [15], [17],
[19], for the well-posedness and properties of solutions), is highly successful in a
multitude of applications, such as laser fusion, electron beam fusion, solar radio
bursts etc. ([18]). However, regarding the study of UHH, the Zakharov system
may not be implemented for the following reasons:
(i) It does not consider the effect of collisions. Therefore, it can only describe the
collisionless part of the damping.
(ii) It is indifferent to the presence of a dc magnetic field, due to the nature of the
ponderomotive force. Therefore, perpendicular waves, peculiar to UHH heating,
cannot be modelled.

In order to overcome these shortcomings we study the effect of the space-
time varying electric field on the ion channel. Specifically, we consider the drift
motion of the ions caused by the time variation of the electric field, namely the
polarization drift.

However, the space variation of the electric field is included in the polariza-
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tion drift. Indeed, it turns out that the contribution of this effect to the system
of equations involves the space derivative of the electric field. In this respect, we
may talk about a non-homogeneous polarization drift (note that a homogeneous
time-varying field is sufficient for the standard polarization drift to occur). This
drift induces a polarization current, which plays the role of the low frequency
coupling between ions and electrons.

This consideration is beneficial in several ways. The polarization current
allows for a straightforward treatment of the collision term in the momentum
equations. In this respect, we retain full two-fluid dynamics, by keeping both
continuity equations. Finally, the dc magnetic field is automatically accounted
for, since the polarization drift is a secondary effect to the ~E× ~B drift flow ([16]).

In Part I, we accomplish the physical analysis of the problem and set up the
system of equations. For this, the standard fluid equations are considered, with
the collision term modelled as in [11]. It turns out that the system belongs to the
dissipative Klein-Gordon Schrödinger (KGS) class. Problems of this kind have
been examined with respect to the existence of solutions and global attractor in
both bounded (see e.g. [1], [8], [10]), and unbounded domains of Rn, for n ≤ 3
(see e.g. [2], [13]).

Our main task, however, is to investigate the parametric energy decay for the
system. Specifically, we seek necessary conditions, dependent on the parameters
of the system, so that energy decay occurs at an exponential rate. This ensures
that, under specific plasma conditions, the energy of the coupled ion-electron
wave is effectively dissipated to the plasma. In this context, we also mention that
in [3], a similar treatment is carried out for another KGS problem, although the
issue of parameter dependence is not addressed.

In the first half of Part II we prove global existence and uniqueness for
the solutions. In the last half, we derive necessary conditions for the parametric
energy decay.

Part III deals with the physical interpretation of the results. In particular,
the necessary conditions extracted in Part II are transformed into a threshold of
the effectiveness of the heating scheme, in terms of the plasma variables (density,
ion and electron temperatures) as well as the magnetic field. The model predicts
that the scheme becomes extremely effective under high-density conditions, as in
the very promising density-limit shots (see e.g. [14]), where also the temperature
assumes relatively low values.

2 Part I: Physical Setup

The derivation of the system of equations is based on standard heuristic argu-
ments, also used for the Zakharov system (see e.g. [16]). The particulars of our
setup are as follows:
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We assume an oscillating electric field in the upper hybrid frequency range,
producing resonant electrons. However, the polarization drift, as a low frequency
mechanism, couples electrons with ions and energy is transferred to the latter,
through collisions.

Concerning geometry, the dc magnetic field occupies the ẑ direction, whereas
the electric field is oriented in the x̂ direction. Therefore, on the xy plane, two
distinct motions take place: (i) the ~E × ~B drift (in the −ŷ direction) and (ii) the
polarization drift (in the x̂ direction). Both motions are taken into account in
the corresponding momentum equations. Therefore, even though the mathemat-
ical system turns out to be 1-D, the following setup effectively describes the 3-D
physical dynamics.

2.1 Configuration

We consider a homogeneous, constant magnetic field ~B = B0ẑ. The high fre-
quency electric field has the form

~E(x, t) = Ẽ(x, t)exp(−iωuht)x̂, (2.1)

with
Ẽ(x, t) = E0(x)exp(−iωt)cos(kx) + iE1(x),

where ωp is the plasma frequency, ωe is the electron gyrofrequency, ωuh =
√
ω2

p + ω2
e

is the upper-hybrid frequency and ω � ωi, where ωi is the ion gyrofrequency. We
adopt the following frequency ordering

τ−1
H ≤ ω � ωi � ωe < ωp < ωuh,

where τ−1
H is associated to the ambipolar potential and corresponds to the low

frequency. In view of this ordering, note that the amplitude Ẽ lies in the low
frequency range, as well. Moreover, it is useful to break up the plasma variables,
namely densities and temperatures (we do not treat heat dynamics), as follows

ni = n0 + nL
i , ne = n0 + nL

e + nH
e ,

vi,x = vL
i,x + vpol

i , ve,x = vL
e,x + vpol

e,x + vH
e,x,

vi,y = vL
i,y, ve,y = vL

e,y + vH
e,y.

In the above scheme, n0 stands for the background density, which is common
for ions and electrons due to quasineutrality. We also assume quasineutrality for
the low frequency densities, i.e.,

nL
i = nL

e = nL � n0. (2.2)
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Now, since it holds ω � ωi, the expression for the polarization drift velocity
reads as follows ([6])

~vk
pol =

c

ωkB0

d

dt
Ẽrx̂, k = e, i, (2.3)

where Ẽr denotes the real part of the amplitude. The following estimate

|ve
pol|

vi
pol

∝
me

mi
� 1

implies that the polarization drift mainly affects the ions. On the other hand, it
produces a polarization current, which has the form

~Jpol = n0e
(
~vi

pol − ~ve
pol
)
∼=
n0c

2mi

B2
0

d

dt
Ẽrx̂. (2.4)

2.2 Ion Dynamics

In order to treat the effect of the polarization drift, we write the continuity
equation in the following form

∂

∂t
nL + n0

∂

∂x
vL
i,x + n0

∂

∂x
vpol
i = 0, (2.5)

i.e., we take the relevant contribution out of the total flux. The momentum equa-
tion in the x̂ direction including collisions reads

min0
∂

∂t
vL
i,x = − γiTi

∂

∂x
nL + en0E

L +
en0

c
vL
i,yB0

+ n0meνei(vL
e,x − vL

i,x), (2.6)

where EL stands for the ambipolar electric field, for which Poisson’s law, in view
of (2.2), gives

∂

∂x
EL = 4πe

(
nL

i − nL
e

)
= 0. (2.7)

Our intent is to differentiate equation (2.6) with respect to x, therefore, we
successively specify the various contributions. Starting with the Lorentz term, we
adopt a minimal momentum equation in the ŷ direction, as

∂

∂t
vL
i,y = −ωiv

L
i,x. (2.8)

We differentiate (2.8) with respect to x and using (2.5) we get

∂

∂t

∂

∂x
vL
i,y = −ωi

∂

∂x
vL
i,x =

ωi

n0

∂

∂t
nL + ωi

∂

∂x
vpol
i ,
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from which, with the aid of (2.3), it follows

∂

∂x
vL
i,y = ωi

nL

n0
+

c

B0

∂

∂x
Ẽr. (2.9)

Next, we differentiate the collision termK = n0meνei(vL
e,x−vL

i,x) with respect
to x. Since the electron velocity is involved, we take the low frequency part of
the electron continuity equation,

∂

∂t
nL + n0

∂

∂x
vL
e,x + n0

∂

∂x
vpol
e = 0.

Now, along with (2.2), (2.4) and (2.5), we obtain the expression for the
collision term via the polarization current, as

∂

∂x
K = n0meνei

∂

∂x
(vL

e,x − vL
i,x) =

meνei

e

∂

∂x
Jpol

=
n0c

2mimeνei

eB2
0

∂

∂t

∂

∂x
Ẽr. (2.10)

Now, differentiate (2.6) with respect to x, also using (2.7), (2.9) and (2.10),
to get

∂

∂t

∂

∂x
vL
i,x = − γiTi

min0

∂2

∂x2
nL + ω2

i

nL

n0
+

e

mi

∂

∂x
Ẽr

+
c2meνei

eB2
0

∂

∂t

∂

∂x
Ẽr. (2.11)

Note here that ∂
∂xẼr, as appears in equation (2.11), is not zero, since Ẽr is not

ambipolar. This follows from the charge separation created by the polarization
drift. In fact, since τ−1

H ≤ ω, Poisson’s law gives

∂

∂x
Ẽr

∼= 4πenL. (2.12)

This expression will be substituted into the collision term of (2.11). However,
we leave the other occurrence of the term ∂

∂xẼr intact to take care of the coupling
with the electron dynamics. Finally, considering (2.5), we approximate the left
side of (2.11) as

∂

∂t

∂

∂x
vL
i,x
∼= − 1

n0

∂2

∂t2
nL. (2.13)

In view of (2.12) and (2.13), equation (2.11) takes the final form

∂2

∂t2
nL − γiv

2
th,i

∂2

∂x2
nL + ω2

i n
L + νei

ω2
p

ω2
e

∂

∂t
nL = −en0

mi

∂

∂x
Ẽr. (2.14)
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Remark 2.1 Note that the unusual form of the right side of equation (2.14), as
compared to the corresponding Zakharov equation, is a consequence of the different
low frequency coupling that we consider, i.e., the polarization drift instead of the
ponderomotive force.

2.3 Electron Dynamics

We write down the electron fluid equations corresponding to the high frequency.
In this respect, note that products of high frequency quantities are considered to
be of higher order and thus suppressed. The continuity equation reads

∂

∂t
nH

e +
∂

∂x

[
(n0 + nL)vH

e,x

]
= 0. (2.15)

The momentum equation in the x̂ direction, including collisions, is

men0
∂

∂t
vH
e,x = −γeTe

∂

∂x
nH

e − en0E −
en0

c
vH
e,yB0 −men0νeiv

H
e,x. (2.16)

Note that the high frequency part of the collision term is dominated by
the electrons. In the following, we express each term of equation (2.16) via the
electric field E. As this affects mainly the electrons, it induces charge separation,
therefore Poisson’s law gives (compare to (2.12))

∂

∂x
E = −4πenH

e . (2.17)

Now, differentiate (2.15) with respect to t to get

∂2

∂t2
nH

e +
∂

∂x

[
(n0 + nL)

∂

∂t
vH
e,x

]
= 0. (2.18)

From (2.17) and (2.18) we have

∂2

∂t2
E − 4πe(n0 + nL)

∂

∂t
vH
e,x = 0. (2.19)

Also, taking the derivative of (2.17) with respect to x we get

∂

∂x
nH

e = − 1
4πe

∂2

∂x2
E. (2.20)

Next, similar to (2.8), the momentum equation in the ŷ direction reads

∂

∂t
vH
e,y = |ωe|vH

e,x. (2.21)
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Now, Ampére’s law, for the homogeneous magnetic field, gives

4πJx = − ∂

∂t
E,

with
Jx = −en0v

H
e,x.

Therefore,

∂

∂t
E = 4πen0v

H
e,x. (2.22)

In order to obtain the expression for vH
e,y, we take the derivative of (2.21)

with respect to x and use equations (2.15) and (2.17), to get

∂

∂t

∂

∂x
vH
e,y = |ωe|

∂

∂x
vH
e,x
∼= −|ωe|

n0

∂

∂t
nH

e ,

which implies that

∂

∂x
vH
e,y = −|ωe|

n0
nH

e =
|ωe|

4πen0

∂

∂x
E.

From the last equation we obtain

vH
e,y =

|ωe|
4πen0

E. (2.23)

With the aid of the expressions (2.19), (2.20) and (2.23), equation (2.16) becomes

∂2

∂t2
E −

(
1 +

nL

n0

)
γeTe

me

∂2

∂x2
E + ω2

p

(
1 +

nL

n0

)
E

+ ω2
e

(
1 +

nL

n0

)
E + νei

(
1 +

nL

n0

)
∂

∂t
E = 0. (2.24)

Now, we assume that 1 + nL

n0

∼= 1. Note, however, that this approximation
breaks down once multiplied by ω2

p, which contains n0 as well. We have

∂2

∂t2
E − γeTe

me

∂2

∂x2
E + ω2

uhE + νei
∂

∂t
E = −ω2

p

nL

n0
E. (2.25)

Finally, we apply expression (2.1) to equation (2.25), also making use of the
approximation ∣∣∣∣ ∂∂tẼ

∣∣∣∣� |ωuhẼ|,

which follows from the frequency ordering. The resulting equation is

2iωuh
∂

∂t
Ẽ + γev

2
th,e

∂2

∂x2
Ẽ + iωuhνeiẼ = ω2

p

nL

n0
Ẽ. (2.26)
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3 Part II: Mathematical Analysis

3.1 Global Existence

In this part, we treat the system derived in the previous section, namely equa-
tions (2.14) and (2.26) in dimensionless form (details are given in Part III). In
particular, the variable ψ stands for the dimensionless low frequency electric field,
whereas the (real) variable φ denotes the dimensionless low frequency density.
Considering Ω a bounded domain of R, the set of equations reads

iψt + κψxx + iαψ = φψ, x ∈ Ω, t > 0, (3.1)
φtt − φxx + φ+ λφt = −Reψx, x ∈ Ω, t > 0, (3.2)

with κ, α, λ > 0. The initial and boundary conditions are

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ Ω, (3.3)
ψ(x, t) = φ(x, t) = 0, x ∈ ∂Ω, t > 0. (3.4)

For completeness we state two well known results that will be frequently
used in the following ([20], [24]).

Lemma 3.1 (Gagliardo-Nirenberg Inequality) Let 1 ≤ p, q, r ≤ ∞, j an integer
such that, 0 ≤ j ≤ m and j/m ≤ θ ≤ 1. Then, for any bounded domain in Rn,
the following inequality is true

||Dju||p ≤ const||u||1−θ
q ||Dmu||θr, u ∈ Lq ∩Wm,r(Ω), Ω ⊆ R

where the constants satisfy the relation

1
p

=
j

n
+ θ

(
1
r
− m

n

)
+

1− θ

q
.

Lemma 3.2 (Gronwall Inequality) Let g, h, y be three positive locally integrable
functions in the interval t0 < t <∞, for some t0 > 0, which satisfy the differential
inequality

dy

dt
≤ gy + h, for all t ≥ t0.

Then, the following uniform estimate for the function y(t) is valid

y(t) ≤ y(t0)exp
(∫ t

t0

g(τ)dτ
)

+
∫ t

t0

h(s)exp
(∫ t

s
g(τ)dτ

)
ds, t ≥ t0.

For the sake of brevity, we highlight only the most important relations. In
what follows, we denote the time derivative with a prime. Also, || · || stands for
the L2(Ω) norm, whereas

∫
dx denotes integration over the domain Ω. Finally, C
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is a generic symbol for any positive constant. We begin by postulating the real
variable θ = φ′ + δφ, where δ is an auxiliary positive constant to be specified
later. Now, the system (3.1)-(3.4) takes the form

iψ′ + κψxx + iαψ = φψ, x ∈ Ω, t > 0, (3.5)
φ′ + δφ = θ, x ∈ Ω, t > 0, (3.6)

θ′ + (λ− δ)θ − φxx + (1− δ(λ− δ))φ = −Reψx, x ∈ Ω, t > 0. (3.7)

Also the initial and boundary conditions take the form

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), θ(x, 0) = θ0(x), x ∈ Ω, (3.8)
ψ(x, t) = φ(x, t) = 0, x ∈ ∂Ω, t > 0. (3.9)

The rest of this paragraph contains the a priori estimates which establish the
existence of a global solution. Note, however, that due to the first order derivative
on the right hand side of the equation (3.7), working in a dual space setting is
not helpful.

First Estimate: We start with the derivation of a priori estimates for the solu-
tions (ψ, φ, θ) ∈ H1

0 (Ω)×H1
0 (Ω)× L2(Ω), assuming that there exists a constant

R > 0 such that ||(ψ0, φ0, θ0)||H1
0×H1

0×L2 ≤ R. Multiplying (3.5) by ψ̄, integrat-
ing over Ω and taking the imaginary part, yields

1
2
d

dt
||ψ||2 + α||ψ||2 = 0. (3.10)

Now, applying Gronwall’s inequality (Lemma 3.2), we obtain

||ψ(t)|| ≤ ||ψ(0)||e−2αt, t ≥ 0. (3.11)

Therefore, we get the estimate

||ψ(t)|| ≤ R, t ≥ 0. (3.12)

Next, we multiply (3.5) by −ψ̄′, integrate and take the real part as

1
2
d

dt
κ||ψx||2 + αIm

∫
ψψ̄′dx = −Re

∫
φψψ̄′dx. (3.13)

Using the above transformation, the right hand side takes the following form

−Re
∫
φψψ̄′dx = −1

2
d

dt

∫
φ|ψ|2dx+

1
2

∫
θ|ψ|2dx− δ

2

∫
φ|ψ|2dx.

Also, we have

αIm

∫
ψψ̄′dx = κα||ψx||2 + α

∫
φ|ψ|2dx.
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Therefore, equation (3.13) takes the form

1
2
d

dt

(
κ||ψx||2 +

∫
φ|ψ|2dx

)
+ κα||ψx||2 +

(
α+

δ

2

)∫
φ|ψ|2dx

=
1
2

∫
θ|ψ|2dx. (3.14)

We proceed with equation (3.7), multiplying by θ and integrating to get

1
2
d

dt
||θ||2 + (λ− δ)||θ||2 −

∫
φxxθdx+ (1− δ(λ− δ))

∫
φθdx

= −Re
∫
ψxθdx. (3.15)

Substituting θ from equation (3.6) into −
∫
φxxθdx and (1 − δ(λ − δ))

∫
φθdx,

equation (3.15) becomes

1
2
d

dt

(
||θ||2 + ||φx||2 + (1− δ(λ− δ))||φ||2

)
+ (λ− δ)||θ||2

+δ||φx||2 + δ(1− δ(λ− δ))||φ||2 = −Re
∫
ψxθdx. (3.16)

We introduce the quantities

F1 := κ||ψx||2 +
∫
φ|ψ|2dx+ ||θ||2 + ||φx||2 + (1− δ(λ− δ))||φ||2

and

G1 := + (δ − 2κα)||ψx||2 − 2α
∫
φ|ψ|2dx+ (3δ − 2λ)||θ||2

− δ(1− δ(λ− δ))||φ||2 − δ||φx||2 +
∫
θ|ψ|2dx− 2Re

∫
ψxθdx.

Adding together (3.14) and (3.16), we obtain

F ′1(t) + δF1(t) = G1(t). (3.17)

Taking δ small enough such that

δ − 2κα < 0, 3δ − 2λ < 0, 1− δ(λ− δ) > 0,

we can render several terms of G1 negative. Using the estimate (3.12), Lemma
3.1 and Young’s inequality, we proceed with the following estimates∣∣∣∣∫ θ|ψ|2dx

∣∣∣∣ ≤ ||θ||||ψ||24 ≤ const||θ||||ψx||1/2||ψ||3/2

≤ const||θ||||ψx||1/2

≤ ε1||θ||2 +
ε2
2
||ψx||2 + C.
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and ∣∣∣∣2α ∫ φ|ψ|2dx
∣∣∣∣ ≤ ε3||φ||2 +

ε2
2
||ψx||2 + C.

A fine point here is that the next integral couples the quantities we need to bound,
as ∣∣∣∣∫ ψxθdx

∣∣∣∣ ≤ ||ψx||||θ|| ≤
ε

2
||ψx||2 +

1
2ε
||θ||2.

Considering the above estimates, we wish to specify proper values for the
arbitrary positive constants ε1, ε2, ε, such that the following two inequalities
hold simultaneously true

ε1 +
1
2ε
≤ −(3δ − 2λ), ε2 +

ε

2
≤ −(δ − 2κα).

Let ν > 0, ν 6= 1
2 , α̃ = −(3δ − 2λ) and β̃ = −(δ − 2κα). Setting

ε1 =
α̃

2ν
, ε2 =

β̃

2ν
,

we end up with the necessary condition

α̃β̃ ≥ ν2

(2ν − 1)2
.

Since α̃, β̃ > 0 the inequality is always satisfied for sufficiently small ν.
Finally, taking ε3 small enough so that

ε3 < δ(1− δ(λ− δ)),

we conclude that equation (3.17) gives

F ′1(t) + δF1(t) ≤ C.

An application of Gronwall’s Inequality (Lemma 3.2) yields that there exists
a positive constant M1 such that, as t→∞, it holds

(||ψ(t)||H1
0

+ ||φ(t)||H1
0

+ ||θ(t)||) ≤M1. (3.18)

Second Estimate: We continue with the a priori estimate in the space

(H1
0 (Ω) ∩H2(Ω))2 ×H1

0 (Ω).

Multiplying (3.5) by ψ̄′xx+αψ̄xx, integrating over Ω and taking the real part,
we get

1
2
d

dt
κ||ψxx||2 + κα||ψxx||2 = Re

∫
φψψ̄′xxdx+ αRe

∫
φψψ̄xxdx. (3.19)
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Manipulating the right hand side in the following way

Re

∫
φψψ̄′xxdx = +

d

dt
Re

∫
φψψ̄xxdx−Re

∫
θψψ̄xxdx

+ (α+ δ)Re
∫
φψψ̄xxdx− Im

∫
φ2ψψ̄xxdx,

equation (3.19) becomes

1
2
d

dt

(
κ||ψxx||2 − 2Re

∫
φψψ̄xxdx

)
+ κα||ψxx||2

−(2α+ δ)Re
∫
φψψ̄xxdx = − Re

∫
θψψ̄xxdx− Im

∫
φ2ψψ̄xxdx. (3.20)

Next, multiply equation (3.7) by −θxx and integrate to get

1
2
d

dt

(
||θx||2 + ||φxx||2 + (1− δ(λ− δ))||φx||2

)
+ (λ− δ)||θx||2

+δ||φxx||2 + δ(1− δ(λ− δ))||φx||2 = − Re

∫
ψxxθxdx. (3.21)

We introduce the quantities

F2 := κ||ψxx||2 − 2Re
∫
φψψ̄xxdx+ ||θx||2 + ||φxx||2 + (1− δ(λ− δ))||φx||2

and

G2 := + (δ − 2κα)||ψxx||2 + (3δ − 2λ)||θx||2 − δ||φxx||2

− δ(1− δ(λ− δ))||φx||2 + 4αRe
∫
φψψ̄xxdx− 2Re

∫
ψxxθxdx

− 2Re
∫
θψψ̄xxdx− 2Im

∫
φ2ψψ̄xxdx.

Adding together equation (3.20) and (3.21), we have

F ′2(t) + δF2(t) = G2(t), t > 0.

Following a procedure similar to the first estimate, we end up with

F ′2(t) + δF2(t) ≤ C, t > 0.

Finally, applying Gronwall’s Inequality (Lemma 3.2), we conclude that there
is a positive constant M2 such that, for t→∞, it holds

(||ψ(t)||H1
0∩H2 + ||φ(t)||H1

0∩H2 + ||θ(t)||H1
0
) ≤M2. (3.22)

We are ready to formulate and prove the main result of this section.
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Theorem 3.1 Assume that

(ψ0, φ0, θ0) ∈
(
H1

0 ∩H2(Ω)
)2 ×H1

0 (Ω).

Then, there exists a unique solution for the system (3.5)-(3.9) such that

ψ ∈ L∞(0,∞;H1
0 (Ω) ∩H2(Ω)), ψt ∈ L∞(0,∞;L2(Ω)),

φ ∈ L∞(0,∞;H1
0 (Ω) ∩H2(Ω)), φt ∈ L∞(0,∞;H1

0 (Ω)), (3.23)
φtt ∈ L∞(0,∞;L2(Ω)),

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ Ω.

Proof (Existence) The proof is based on the usual compactness arguments. We
may consider the Galerkin system associated to (3.5)-(3.9). By similar compu-
tations, it is possible to verify that the estimates (3.18) and (3.22) hold also for
the sequences of approximating solutions ψm, φm, which can be constructed by
using the complete orthonormal system, generated by the eigenfunctions of the
operator −∆, D(−∆) = H1

0 (Ω)∩H2(Ω). We conclude that the sequences ψm and
φm are bounded in L∞(0,∞;H1

0 ∩H2(Ω)) whereas the sequence θm is bounded in
L∞(0,∞;H1

0 (Ω)). Therefore, we may extract weakly -? convergent subsequences,
which are sufficient to pass to a limit (ψ, φ) in the Galerkin equations. The weak
convergence process combined with elliptic regularity results shows that the pair
(ψ, φ) is a solution of (3.5)-(3.9), sharing the properties (3.23).

(Uniqueness) Let (ψk, φk, θk), k = 1, 2 be two solutions in X = (H1
0 ∩

H2(Ω))2×H1
0 (Ω), associated to the initial data (ψ0k, φ0k, θ0k) and let (ψ, φ, θ) =

(ψ1 − ψ2, φ1 − φ2, θ1 − θ2), (ψ0, φ0, θ0) = (ψ01 − ψ02, φ01 − φ02, θ01 − θ02). Then,
(ψ, φ, θ) satisfies the following system

iψ′ + κψxx + iαψ = φ1ψ + φψ2,

φ′ + δφ = θ,

θ′ + (λ− δ)θ − φxx + (1− δ(λ− δ))φ = −Reψx,

where the initial conditions are written as in (3.8).
Now, taking into account (3.12), (3.18) and (3.22), we can show that

||ψ||2 + κ||ψx||2 + ||θ||2 + (1− δ(λ− δ))||φ||2

+ κ||ψxx||2 + ||θx||2 + ||φxx||2 + (2− δ(λ− δ))||φx||2

≤ C(||ψ0||2 + ||ψ0x||2 + ||θ0||2 + ||φ0||2 + ||ψ0xx||2

+ ||θ0x||2 + ||φ0xx||2 + ||φ0x||2)eCt,

which proves the assertion. ♦
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3.2 Energy Decay

We return to the original system (3.1)-(3.4) and define the corresponding energy
functional as

E(t) =
1
2

(
||ψ||2 + κ||ψx||2 +

∫
φ|ψ|2dx+ ||φ′||2 + ||φx||2 + ||φ||2

)
.

Note that, as in the Zakharov setup, the integral
∫
φ|ψ|2dx determines the sign of

the Hamiltonian. Nevertheless, this integral cannot possibly affect the asymptotic
value of the energy, which remains positive, as indicated by the following result:

Lemma 3.3 Let the conditions of Theorem (3.1) be fulfilled. Further, assume
that there is a positive constant R such that ||E(0)|| ≤ R. Then, there exists a
t∗ > 0 such that, for every t ≥ t∗, it holds E(t) > 0.

Proof Under the assumptions for the initial data, Theorem (3.1) ensures that
the energy E(t) is well defined for all t > 0. Now, from estimate (3.11), it turns
out that

lim sup
t→∞

||ψ(t)|| = 0.

Therefore, for every ε0 > 0, there exists a t∗ > 0 such that,

||ψ(t)|| < ε0, for all t ≥ t∗. (3.24)

We take the following estimate on the integral
∫
φ|ψ|2dx as follows:∣∣∣∣∫ φ|ψ|2dx

∣∣∣∣ ≤ ||φ||||ψ||24 ≤ C̃||φ||||ψx||1/2||ψ||3/2,

where C̃ is the positive constant induced by Lemma 3.1. Now, from relation
(3.24), also using Poincaré’s inequality ||ψ|| ≤ λ

−1/2
1 ||ψx||, where λ1 stands for

the first eigenvalue of the Laplacian, the last estimate takes the form∣∣∣∣∫ φ|ψ|2dx
∣∣∣∣ ≤ C(λ1)||φ||||ψx||||ψ||

≤ C||φ||||ψx||ε0

≤ 1
2
||φ||2 +

C2ε20
2
||ψx||2, for all t ≥ t∗.

Therefore, ∫
φ|ψ|2dx ≥ −1

2
||φ||2 − C2ε20

2
||ψx||2, for all t ≥ t∗.
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This estimate suggests that, for all t ≥ t∗, it holds

E(t) ≥ 1
2

{
||ψ||2 +

(
κ− C2ε20

2

)
||ψx||2 + ||φ′||2 + ||φx||2 +

1
2
||φ||2

}
. (3.25)

Choosing ε20 <
2κ
C2 , justifies our claim. ♦

Proceeding with the analysis, we multiply equation (3.1) by −(ψ̄′ + αψ̄). In-
tegrating over Ω and taking the real part, yields

1
2
d

dt

(
κ||ψx||2 +

∫
φ|ψ|2dx

)
+ κα||ψx||2

+ α

∫
φ|ψ|2dx =

1
2

∫
φ′|ψ|2dx. (3.26)

Next, we multiply equation (3.2) by φ′ and integrate to get

1
2
d

dt

(
||φ′||2 + ||φx||2 + ||φ||2

)
+ λ||φ′||2 = −

∫
Reψxφ

′dx. (3.27)

Adding together equations (3.10), (3.26) and (3.27) we obtain

E′(t) + α||ψ||2 + κα||ψx||2 + λ||φ′||2

= −α
∫
φ|ψ|2dx+

1
2

∫
φ′|ψ|2dx−

∫
Reψxφ

′dx. (3.28)

We take estimates on the right side terms of (3.28) as follows:∣∣∣∣∫ Reψxφ
′dx

∣∣∣∣ ≤ 1
2ε1

||ψx||2 +
ε1
2
||φ′||2. (3.29)

Next, as in Lemma (3.3), we have∣∣∣∣α ∫ φ|ψ|2dx
∣∣∣∣ ≤ αC(λ1)||φ||||ψx||||ψ||

≤ αε0C||φ||||ψx||

≤ ε

2µ
||φ||2 +

α2ε20Ĉ(λ1, µ)
2ε

||ψx||2, for all t ≥ t∗, (3.30)

where we have introduced the parameter µ > 1, which can be arbitrarily chosen.
The last term is estimated in a similar fashion, this time using estimate (3.12)∣∣∣∣12

∫
φ′|ψ|2dx

∣∣∣∣ ≤ C(λ1)||φ′||||ψx||||ψ||

≤ CR||φ′||||ψx||

≤ R2ε1
2
||φ′||2 +

1
2ε1

||ψx||2. (3.31)
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Note that the constant C is incorporated into R. Collecting the estimates (3.29)-
(3.31), equation (3.28) for t ≥ t∗ becomes

E′(t) ≤

(
1
ε1
− κα+

α2ε20Ĉ

2ε

)
||ψx||2 +

(
ε1
2

+
R2ε1

2
− λ

)
||φ′||2 +

ε

2µ
||φ||2.(3.32)

Following [12], for ε > 0, we introduce the perturbed energy

Epert(t) = E(t) + εp(t), (3.33)

where p(t) = ||ψ(t)||2 + (φ′(t), φ(t)). Then,

p′(t) = 2Re(ψ′, ψ) + (φ′′, φ) + ||φ′||2. (3.34)

Using equations (3.1) and (3.2), equation (3.34) becomes

p′(t) = −2α||ψ||2 − ||φx||2 − ||φ||2 + ||φ′||2 − λ

∫
φ′φdx−

∫
Reψxφdx. (3.35)

Adding and subtracting several terms, also postulating

N = min{4α, 1},

equation (3.35) gives

p′(t) ≤ − NE(t) +
κ

2
||ψx||2 +

3
2
||φ′||2 − 1

2
||φx||2 −

1
2
||φ||2

+
1
2

∫
φ|ψ|2dx− λ

∫
φ′φdx−

∫
Reψxφdx. (3.36)

We proceed by estimating the integral terms as follows,∣∣∣∣12
∫
φ|ψ|2dx

∣∣∣∣ ≤ ||φ||||ψ||24 ≤ C̃||φ||||ψx||1/2||ψ||3/2

≤ Rε2
2
||φ||2 +

R

2ε2
||ψx||2, (3.37)∣∣∣∣λ ∫ φ′φdx

∣∣∣∣ ≤ λ2ε3
2
||φ′||2 +

1
2ε3

||φ||2, (3.38)∣∣∣∣∫ Reψxφdx

∣∣∣∣ ≤ ε3
2
||ψx||2 +

1
2ε3

||φ||2. (3.39)

Collecting (3.37)-(3.39), equation (3.36) becomes

p′(t) ≤ − NE(t) +
(
κ

2
+

R

2ε2
+
ε3
2

)
||ψx||2 +

(
3
2

+
λ2ε3

2

)
||φ′||2

− 1
2
||φx||2 +

(
Rε2
2

+
1
ε3
− 1

2

)
||φ||2. (3.40)
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Now, differentiate (3.33) with respect to t and use equations (3.32) and (3.40)
to obtain

E′pert(t) ≤ − εNE(t)− ε

2
||φx||2 +

[
1
ε1
− κα+

α2ε20Ĉ

2ε
+ ε

(
κ

2
+

R

2ε2
+
ε3
2

)]
||ψx||2

+
[
ε1
2

+
R2ε1

2
− λ+ ε

(
3
2

+
λ2ε3

2

)]
||φ′||2

+ ε

[
Rε2
2

+
1
ε3
− 1

2
+

1
2µ

]
||φ||2. (3.41)

We require that all expressions within the brackets are simultaneously non-
positive or zero. To achieve this, we introduce the auxiliary constant ν > 0. Then
choosing the constants to be

ε2 =
ν

R
, ε3 =

1
ν

and setting the last expression equal to zero, we determine the value of ν as

ν =
µ− 1
3µ

.

Consequently, the constants get the value

ε2 =
µ− 1
3µR

, ε3 =
3µ
µ− 1

.

Next, the implication that the second expression is nonpositive provides an
upper bound for ε as

ε ≤ 2λ− (1 +R2)ε1
3 + λ2ε3

=: ε̂1. (3.42)

Finally, we demand the first expression to be nonpositive. This leads to the
quadratic inequality

ε2
(
κ

2
+

R

2ε2
+
ε3
2

)
+ ε

(
1
ε1
− κα

)
+
α2ε20Ĉ

2
≤ 0.

We are expecting two positive roots, one of which approaching zero, as ε0 does.
Therefore, we have

ε̂2 :=
2
(
κα− 1

ε1

)
(
κ+ R

ε2
+ ε3

) ≥ ε & 0. (3.43)
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We purposely have not yet specified the value of ε1. In fact, this constant will
be used to obtain the necessary conditions we need, by requiring that ε̂1 and ε̂2,
in equations (3.42) and (3.43) respectively, have to be positive. Then, it should
hold

ε1 > (κα)−1 (3.44)

and

ε1 <
2λ

1 +R2
(3.45)

Combining relations (3.44) and (3.45) we get the conditions

2λακ > 1, (3.46)

and

R2 < 2λκα− 1, (3.47)

which guarantee that

E′pert ≤ −εNE(t), for all t ≥ t∗. (3.48)

We are ready to state the final result of this part.

Theorem 3.2 Suppose that for the parameters κ, λ, α condition (3.46) holds and
there exists R(κ, λ, α) > 0, satisfying condition (3.47), such that ||E(0)|| ≤ R.
Then, the problem (3.1)-(3.4) manifests energy decay.

Proof It is readily shown that, for every ε > 0 and t ≥ t∗, there exists a positive
constant C(λ1), so that

|Epert(t)− E(t)| ≤ εC(λ1)E(t). (3.49)

Now, from equations (3.48) and (3.49) we infer that, for ε ∈ (0, ε0], it holds

Epert(t) ≤ 2E(0)exp
(
−εNt

2

)
, for all t ≥ t∗,

where ε0(κ, λ, α) = min{ε̂1, ε̂2, 1
C(λ1)}. ♦

Remark 3.1 The time t∗ introduced in the energy decay analysis has a specific
physical meaning. This is the time so that the non-collisional integral

∫
φ|ψ|2dx

is absorbed by the collisional terms (see 3.25). Therefore, t∗ roughly signifies the
time required by the collisional damping to smooth out the excessive difference
of kinetic energies of resonant electrons and non-resonant ions (equipartition).
Given standard reaction conditions, this time is of the order of 10−8 − 10−6 sec-
onds.
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4 Part III: Physical Interpretation

We write equations (2.14) and (2.26) in dimensionless form. For this, we introduce
the dimensionless variables

t̂ = At, x̂ = Bx, Ê = ΓẼ, n̂ = ∆nL,

where A,B,Γ,∆ are positive constants. Now, equation (2.26) becomes

i
∂Ê

∂t̂
+
γev

2
th,e

2ωuh

B2

A

∂2Ê

∂x̂2
+ i

νei

2A
Ê =

ω2
p

2ωuhn0

1
A∆

n̂Ê, (4.1)

whereas equation (2.14) gives

∂2n̂

∂t̂2
− γiv

2
th,i

B2

A2

∂2n̂

∂x̂2
+
ω2

i

A2
n̂+

ω2
p

ω2
e

νei

A

∂n̂

∂t̂
= −en0

mi

B∆
A2Γ

∂Êr

∂x̂
. (4.2)

In equation (4.2) we set

ω2
i

A2
= 1 and γiv

2
th,i

B2

A2
= 1,

from which we get

A = ωi and B2 =
ω2

i

γiv2
th,i

.

In this fashion, though not necessary, we can determine the expressions for
Γ and ∆ as well. The normalized system of equations now reads

iÊt + κÊxx + iαÊ = n̂Ê, (4.3)

n̂tt − n̂xx + n̂+ λn̂t = − ∂

∂x
Êr, (4.4)

with the parameters

κ =
ωi

2ωuh

γev
2
th,e

γiv2
th,i

, α =
νei

2ωi
, λ =

ω2
pνei

ωiω2
e

.

Now, using standard relations (see [22]), we may express the parameters as
functions of the plasma variables n, Te, Ti and the magnetic field B0. We have
(Te in keV, n in m−3, B0 in Tesla)

ωp = 56.4n1/2, ωi = 95.5 · 106B0,

ωe = 17.6 · 1010B0, νei = 1.6 · 10−15 n

Te
3/2

.
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Now, the necessary condition (3.46) for the energy decay reads

ω2
pν

2
ei

2ωuhωiω2
e

γev
2
th,e

γiv2
th,i

> 1.

To get a better understanding, we make the plausible assumption ωuh
∼= 2ωp,

thus ending up with

n5/2

T 2
e TiB3

0

& 8 · 1055, (4.5)

which establishes a threshold of the effectiveness of UHH in terms of the plasma
variables and the magnetic field.

5 Conclusions

In this work we investigate a KGS-type evolution system, adapted to describe the
UHH scheme for a magnetical confinement fusion device. The model focuses on
Coulomb collisions, the fundamental mechanism of energy transfer between reso-
nant electrons and non-resonant ions, thus producing bulk heating of the plasma.
This is achieved by investigating the ion channel via the non-homogeneous po-
larization drift. A dc magnetic field is also considered, allowing for the modelling
of perpendicular waves, peculiar to this heating scheme.

With respect to the methematical setup, the 1-D configuration is by no
means restrictive, since the model effectively describes 3-D physical dynamics:
dc magnetic field in the ẑ direction, polarization drift in the x̂ direction and
~E × ~B drift in the ŷ direction. Further, the bounded domain manifests itself
exclusively through Poincaré’s e inequality. However, we would like to note, that
possible generalisations, including the study of a similar model in a bounded or an
unbounded domain and the generalisation of the results in more regular spaces,
could possibly be a plan of future work.

The physical interpretation of the results ends up with a threshold of the
effectiveness of UHH, involving the plasma variables, i.e., density, ion and electron
temperatures as well as the magnetic field. Our result suggests that UHH is
favoured by high-density conditions, such as in the very promising density-limit
shots, where also the temperature assumes relatively low values.
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